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ABSTRACT
. 7,

The generation of a possibly non-stationary random process having
a specified autocorrelation function is examined. If the class of auto-
correlation functions under consideration is suitably restricted, a fi-
nite linear system to be excited by white noise may be determined which
yields at its output a random process having the specified autocorrela-
tion function. The determination of this linear system provides a ''spec-
tral factorization'" for the random process. Simple criteria are thus ob-
tained which serve to identify autocorrelation functions in the class.
The positive definite character of such functions may be tested by a

“*straightforward process related to the factorization technique. More-

over, conditions may be stated whereby the factorization and the results -
derived from it are valid globally.

1. INTRODUCTION

Many problems of signal processing, especially filtering and pre-
diction of random signals, have benefited from the use of the '"shaping
filter" technique. 1In general, this technique demands that a given
random process be gemerated as the output of a system (called a shaping
filter) whose input is white noise. The usual applications require that
the random process be specified only by its second-order statistics,
that is, by its spectral density if the process is wide-sense stationary,
or more generally by its autocorrelation function if the process may be
stationary or non-stationary. The term 'factorization" (or '"spectral
factorization') is given to the process of determining a shaping filter
from a given autocorrelation function. The .shaping filter is usually

"required to consist of a finite number of lumped elements. This re-

quirement facilitates not only mathematical analysis, but also the
generation of the random process by analogue simulation or other menas.
The simplest formulztion of the factorization problem imposes additional
assumptions requiring that both the given random process and the white
noise input process be real and scalar valued and have zero mena.

The problem briefly described above has been the subject of many
investigations which have met with varying degrees of success. Bode
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and Shannon [1] were among the first to apply spectral factorization to
the smoothing and prediction theory of stationary random processes. In
their case the spectral density of the random process, a rational function,
was symmetrically factored into two parts, one of which was chosen to be
the (non-unique) transfer function of the shaping filter. Darlington [2]
investigated the non-stationary case, and demonstrated the existence of a
spectral factorization when the type of time variations was suitably de-
fined and restricted. At about the same time, Batkov [3) proposed a re-
cursive algebraic solution to the factorization problem which seems to be
invalid except in special cases. The most recent work on this problem

was performed by Kalman [4], Stear [5], and Anderson [6]. Kalman essen-
tially reformulated the problem in state variable terms. The results of
Stear and Anderson, although derived by different methods, are similar

and appear to provide a first step in demonstrating the existence.of a
factorization for the general non-stationary case. It is, in fact, the
work of Kalman and Anderson which is most closely related to the approach
taken in the present paper.

2. TFORMULATION

It will be assumed that the shaping filter may be described in the
following way: :

x(t) = B(t)u(t) |
y(£) = af (£)x(t) (1)

In this equation, x(t), B(t), and o(t) are real valued n-vectors,* and
the input u(t) is a scalar, zero-mean, white-noise process, i.e.,
E{u(t)u(t)} = 6(t-T). The output autocorrelation function is denoted by
r(t,T) = E{y(t)y(1)}. The system is assumed to be causal.

The form chosen for the shaping filter is quite general. Some pre-
vious investigations have represented the filter by a single nt® order
differential equation, which implies a stringent observability require-
ment on the present form. Although the absence of a feedback matrix in
equation (1) may make this form unsuitable for practical simulation, the
theory of equivalent systems [7] 1is sufficiently developed to indicate
when the above system has an equivalent but practical realization.

The autocorrelation function of the process y(t) may easily be ex-
pressed by means of (1). Assume that at some initial time ty the state
vector is a random variable x(ty). Let

Mo = E{x(to)x* (to)) (2a)

and g
M(t) = M, +f B(\)B (A\)dX. (2b)

‘ to.

— -

* The superscript t will be used to denote matrix transpose.
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Then M(t) is the covariance matrix of the state vector x(t) and

ot (EM(E)a(T) (e<r)
r(e,m) ={ | 3)
ot (E)M(T)e(T) (7). :

The matrix M(t) defined above has the following properties: both M(t) and ‘

its derivative M(t) are symmetric, positive semidefinite matrices, and

the rank of M(t) is at most unity. Moreover, any matrix with these pro-

- perties can be expressed as in equation (2). Such matrices will be called
admissable. ‘

From equations (2)'¢nd (3), r(t,T) must satisfy the following condi-
tions:

.Al. r(t,T) is symmetric; i.e., r(t,T) - r(T,t).

A2. r(t,T) is separable; i.e., there exist (column) vectors Y(t) and
@ (t) such that

¢£(t)Y(T) for t>T
.. r(t,T) -{
Yt (£)@ (T) for t < T. _
The vectors Y(t) and @ (t) are assumed to be included in the given

data.

~A3. r(t,T), by virtue of being an autocorrelation function, must be non-
negative definite [8]; i.e.,

n n .
z z air(ti,t,)aj = 0,
f=] jml

for all a;, t;y and finite n.

The last requirement is not only physically reasonable, but also it has
been established directly that functions of the form of equation (3),
with M(t) admissable, must satisfy condition A3. Hence, if any function
r(t,T) can be rewritten as in equation (3) with M(t) admissable, then
this function is non-negative definite. But once r(t,T) is expressed
in this form, the factorization problem is solved, since B(t) can be de-
termined readily from M(t).

The following definition and theorem summarize the discussion above.
(The theorem was originally stated by Kalman [4] in slightly different
terms.)

Definition 1. A function r(t,T) satisfying Al and A2 admits a
factorization if there exists a random process y(t) such that

r(t,T) = E{y(t)y(n)}
. where y(t). is generated by a shaping filter.

Theorem 1. A function r(ﬁ,T) satisfying Al and A2 admits a fac-
torization if and only if there is a vector q(t) and an admissable
matrix M(t) such that ~
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L Rkk Thé k-th derivative of a fuhction ¢ will be denoted ¢

Cr(t,T) = ot ()M[min(t,T) Ja(T),

in which case r(t,T) satisfies A3. K
|

3. THE FACTORIZATION PROBLEM

This section will summarize and extend a factorization technique
which has recently been developed. Assumptions Al-A3 will be in effect,
and the following assumptions will also be required:

.A4. The vectors ¢ and Y have a sufficient number of continuous deriva-
tives.¥

A5. The sets {¢;} and {y,} for i = 1 ... n are each comprised of line-
arly independent functions over the appropriate interval of interest.

The last assumption is not restrictive.
In order to factor r(t,T), let ' ;

¢t (E)Y(T) = ot (O)M(T)a(T) t > T.

Because of A5, we may equate &(t) = ¢(t) to within an unimportant con-
stant linear transformation which will be taken as the identity. trans-
formation for convenience. Then

Y=M 4)

is the basic equation which must be solved for an admissable matrix M(t).
Under certain conditions this equation may be converted into the follow-
ing matrix Ricatti differential equatiom: ¥*

(Y(k'l'l) _- m(k-l-l))(Y(k-Fl) - m(k-!-l)l)f

6,2

(5)

M=

where the scalar quantity 6¢% is defined as
*kk
5,3 = ¢(k)tY(k+1) - ¢(k+1)tY(k)..
In deriving equation (5) it was assumed that:
. A6. For some k < n, 83 (t) # 0 for all t, and 8,%(t) = 0 for 0 < i < k.

Let My, a positive-semgdffinite m?tfix, denote an init}al value of '
M(t). Also, let & = [¢, ‘¥, ..., ¢°°7] and Ik = [y, Y, ..., ¥ 1.

% The argument "t" will be omitted when it is clear from the context
that no confusion will arise.

%% Although derived independently, the method of transforming equation

— - (&) into the Ricatti equation (5) is essentially that employed by
Anderson [6], and will therefore be omitted here.

(x)
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Then as a consequence of the derivation of equation (5), M, must satisfy
Ty (to) = Mo¥ (to) - (6)

The standard existence theorem for ordinary differential equations [9]
shows that equation (5) has a unique solution M(t) in a neighborhood of
to, at which point M(ty) = My. The authors have shown that if 6, = 0
for i < k as assumed, then 6,2 2 0. The hypothesis of this statement is
necessary. For example, if r(t,T) = e te7 for t > T, then 8,2 = 2, where-
as §6,° = -2, Of course, equation (5) is valid only as long as §:2 > 0.

With 6,2 > 0, it is obvious from the form of equation (5) that the
solution M(t) is admissable. It must now be established that equation
(4) is satisfied in the region where M(t) is defined. Anderson has shown
this result by exhibiting a linear differential equation which is satis- .
fied by the vector quantity [Y(t) - M(t)p(t)]. 1If the initial condition
for the linear differential equation is zero as implied by equation (6),
then the solution, [Y - Mp] is everywhere zero, and the factorization
problem has a local solution.

Thus far the existence of an initial matrix has only been postula-.

.*ted. That its existence is not obvious is apparent from the following

consideration. In order for equation (6) to be valid, it is necessary
that Ty and & be consistent in the sense that rank (Ik) < rank (&).

For if this rank condition is violated, then there is no M, satisfying

Ty = M;% . In fact, it is demonstrated below that rank (Ix) = rank (&) =

.k + 1.

Consider a matrix R deflned as Re = &t I}. We will show that Rg
is nonsingular. Let Y = col[y< 1) ees Y'E) 1%, Then following
Loeve [8], Rc = E{Y}Y}‘} and is positive semidefinite. Assume that Ry
is singular. Then the random variables y(‘)(t) are linearly dependent;
i.e., there exist continuous scalars a; (t) such that

k
Zay
i=0

with probability one. Differentiation of this linear constraint yields
an expression of the form

(1) _ o

k
ylk+1) & ¢ biy(‘)
i=0

provided that a # 0. Therefore y(k+1) exists, and Rktl = E{thlYi 11 =
3 ,,Tks1 is a symmetric matrix. In particular, g¢¥)tyls+1) o gle+1ie (x )
i.e., &2 = 0, which contradicts assumption A6. Therefore the rank of

R¢ must be k+l and R, is positive definite,%*

* The derivatives y'*’ (t) are to be interpreted in the mean square sense
[8]. The existence of these derivatives is guaranteed if 6,2 = 0 for

- -1 =0 ... k-1. The proof of this statement is simple but will not be
included here. '

*% A more detailed analysis would show that R, may be singular, but the
points of singularity cannot be dense on any interval.
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With R, positive definite it is easy to show a method of comstruc-
ting M;. Let V and U be matrices consisting of n rows and n-k-1 columns,
and let U = MyV. Then

[?‘.‘.}m[@k ] = [?*.t.][rk 0] = [.*.‘e.é?ﬁt.‘.’] )
vt vt VI vt U

In general, non-unique matrices V and U may be found which satisfy

§tu=0, V!I, =0, and V'U = I. The matrix [ iV] is then non-singular, ..
and equation (7) may be inverted to yield a matrix M, which is symmetric, .
positive definite, and satisfies Ik = My . -

4. IDENTIFICATION OF AUTOCORRELATION FUNCTIONS

In the previous section it was shown how a class of functions r(t,T)
defined by a certain set of assumptions admits spectral factorization.
With the exception of A3, these assumptions constitute a prescription for
determining analytically whether a given r(t,T) = ¢ (t)Y(T) is a member
of the class. It is assumption A3 which presents the problem because the

.*definition of the non-negative definite property is better suited to de-

termining that a function is not non-negative definite, than determining
that it is. It would therefore be desirable to be able to identify func-
tions which admit factorization without explicitly relying on the defi-

nition of the non-negative-definite property in A3, and without substan-

~tially increasing the complexity of the operations required by the re-

maining assumptions. The previous discussions indicate a way of expli-
citly avoiding A3 without further restricting the class of functioms
r(t,T). Assumption A3 was used for only two purposes: first, for showing
that 6,2 (t) = 0, and second, for showing that R 1is positive definite.

Now, by eliminating A3 and modifying A6 to read:

" A6' For some k < n, 82(t) > 0 for all t, and 6;2(t) = 0 for all

0 < i<k. Also, R.(t) is a non-negative definite matrix which may
be singular at points not dense in any interval.

an equivalent set of assumptions is achieved. Note that A6' requires
only the calculation of derivatives and determinants. Theorem 1l shows
that A3 is implied by the new set of assumptions. These assumptions
obviously comprise a set of conditions which are sufficient to deter-
mine whether a function r(t,T) admits a factorization. These assump-
tions are necessary in the limited sense that if 82 < 0 or if R, is
non-definite, then r(t,T) is not non-negative definite and hence does
not admit factorization. . .

It is possible that r(t,T) may be such that 8¢ = 0 at some points

* or that 613 =0 for all i=0, 1, ... . For functions of this type, the

Ricatti equation (5) may not exist, or if it does, will contain singu-
larities. This case has been investigated in detail with the result
that A6' may be relaxed considerably.

"=~ The following examples illustrate how the new assumptions may be

used .to determine whether a given function admits factorization.




Example 1. r(t,T) = -ete”T for t >T. Let ¢(t) = -e* and y(t) = & .

Then 65° = 2 > 0, so that k = 0 and R, = r(t,t) = -1 < 0. Hence r(t,T)
does not admit factorization.

Example 2 (Kalman). Let r(t,T) = f[min(t,T)]. 'If f£(t) is positive and
increasing, then by setting ¢(t) = 1 and Y(t) = £(t) we have §5% = £(t) > 0
and Ry (t) = r(t,t) = £(t) > 0, which satisfies A6'. Hence r(t,T) is non-
negative definitq.

5. SOLUTION DEFINED IN THE FUTURE

The above set of assumptions has been shown to be sufficient only
locally because the factorization technique depends on the existence of
a solution of a non-linear differential equation. It is well known that
solutions of such equations may possess a finite escape time; i.e., be-
come unbounded at a finite time after t,. This behavior is clearly un-
desirable, especially where simulation is involved. One would hope to
be able to avoid a finite escape time by requiring that r(t,t) be boun-
ded on every finite interval. The following example shows that this re-

.»quirement does not insure boundedness of M(t).

. Example 3. Let r(t,T) = { -max(t,T) for t,T <0
0

for t > 0or T >0,
Then for t > T, ¢(t) = t and yY(t) = -1 provided that t < 0 and T < 0,

.Equation (4) becomes -1 = Mt, which has the solution M = -1/t. This

"solution" escapes at t = 0. However, r(t,T) is non-negative definite,
since 8,° = 1> 0 and R (t) = r(t,t) = -t > 0 for t < 0. When t > 0 or
T>0 then y =¢ = 0, but M which is admissable, cannot decrease and re-
mains infinite for t > 0.

The reason that the unbounded behavior of M(t) in the above example

" went undetected in r(t,T) is that at t = 0 the shaping filter degenerated

so that the escape of the state variable could not be observed at the fil-
ter output. The important concept here is observability. System (1) is
said to be completely observable [10], if for any t there exists a finite
t' > t such that the functions {@; (t)} are linearly independent over the
interval [t,t'].

The following theorem is relevant to the discussion of finite escape
time but the proof is omitted here.

- Theorem 2. If system (1) is completely observable and if r(t,t) is boun~

ded on every finite interval, then M(t), the solution to equation (5), is
bounded on every finite interval.

The requirement of complete observability in the above theorem is only
sufficient to insure the boundedness of M(t). Complete observability is
not a necessary condition since a shaping filter may be non-observable and
yet the covariance matrix, M(t), of the state vector may be bounded.

_ Since determination of the shaping filter is the object of the fac-
torization problem it might seem logically inconsistent to require, a
priori, that the filter be completely observable. However, the observa-
bility property only requires knowledge of the "output part" of the fil-
ter, here specified by the given vector ¢(t).

l"‘.



6. CONCLUSION

The follwoing example summarizes several points presented here.

(

. Example 4. r(t,T) = T/2 - T®/6t for t > T. By’

8(t) -[ 17 and y(e) -[ "’2]
-1/t /6

one may calculate 6,2 = 0, §,% = 1/ > 0, and

qhoosing

'-"'

Rl(t) - [t/3 1/6] which is positive definite only for t > 0.

‘'1/6 1/3t
Hence r(t,T) admits a factorization only for t,T > 0. Moreover,  since the
functions -1/t and 1 are linearly independent over:any positive interval,

the factorization is global.
By choosing t = 1 as the initial time and

o 'M‘[l 1/2]
. ° Li/2 1/3

as the.initial condition, one obtains the matrix

M(t) = [ t ta/%]
2/2 t3/3

as the solution to the matrix Ricatti equation and

B(t) = 3{1]
t

for the coefficients of the shaping filter.

If the hypotheses of Theorem 2 are added to assumptions Al...A6', ex-
cluding A3, the result is a set of criteria which defines a large class

of functions known to be capable of global factorization. These crite-
ria may be applied in a striaghtforward fashion to an arbitrary function
and moreover, any function satisfying these criteria must also satisfy the
non-negative -definite property, and must therefore be an autocorrelation

function.
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